numpy.median¶

numpy.
median
(a, axis=None, out=None, overwrite_input=False, keepdims=False)[源代码]¶ Compute the median along the specified axis.
Returns the median of the array elements.
Parameters:  a : array_like
Input array or object that can be converted to an array.
 axis : {int, sequence of int, None}, optional
Axis or axes along which the medians are computed. The default is to compute the median along a flattened version of the array. A sequence of axes is supported since version 1.9.0.
 out : ndarray, optional
Alternative output array in which to place the result. It must have the same shape and buffer length as the expected output, but the type (of the output) will be cast if necessary.
 overwrite_input : bool, optional
If True, then allow use of memory of input array a for calculations. The input array will be modified by the call to
median
. This will save memory when you do not need to preserve the contents of the input array. Treat the input as undefined, but it will probably be fully or partially sorted. Default is False. If overwrite_input isTrue
and a is not already anndarray
, an error will be raised. keepdims : bool, optional
If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original arr.
1.9.0 新版功能.
Returns:  median : ndarray
A new array holding the result. If the input contains integers or floats smaller than
float64
, then the output datatype isnp.float64
. Otherwise, the datatype of the output is the same as that of the input. If out is specified, that array is returned instead.
参见
Notes
Given a vector
V
of lengthN
, the median ofV
is the middle value of a sorted copy ofV
,V_sorted
 i e.,V_sorted[(N1)/2]
, whenN
is odd, and the average of the two middle values ofV_sorted
whenN
is even.Examples
>>> a = np.array([[10, 7, 4], [3, 2, 1]]) >>> a array([[10, 7, 4], [ 3, 2, 1]]) >>> np.median(a) 3.5 >>> np.median(a, axis=0) array([ 6.5, 4.5, 2.5]) >>> np.median(a, axis=1) array([ 7., 2.]) >>> m = np.median(a, axis=0) >>> out = np.zeros_like(m) >>> np.median(a, axis=0, out=m) array([ 6.5, 4.5, 2.5]) >>> m array([ 6.5, 4.5, 2.5]) >>> b = a.copy() >>> np.median(b, axis=1, overwrite_input=True) array([ 7., 2.]) >>> assert not np.all(a==b) >>> b = a.copy() >>> np.median(b, axis=None, overwrite_input=True) 3.5 >>> assert not np.all(a==b)